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SUMMARY 
The boundary-type finite element method has been investigated and applied to the Helmholz and mild-slope 
equations. Four types of interpolation function are examined based on trigonometric function series. Three- 
node triangular, four-node quadrilateral, six-node triangular and eight-node quadrilateral elements are 
tested; these are all non-ccmforming elements. Three types of numerical example show that the three-node 
triangular and four-node quadrilateral elements are useful for practical analysis. 
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INTRODUCTION 

The purpose of this paper is to investigate solution procedures for wave propagation by the 
boundary-type finite element method, which was originally presented by our research group and 
applied to the Helmholz and mild-slope equations. The validity of the method is shown in the 
numerical examples given in References 1-5. 

The procedure is based on the following ideas. The variational form of the basic equation can be 
formulated as the boundary integral equation assuming that the interpolation equation satisfies 
the basic equation. For this purpose, this paper employs four types of sinusoidal function series. 
The final finite element equation can be obtained by performing a line integral for each finite 
element and superposing the resulting equations with the total nodal points in the wave field to be 
analysed. 

The characteristic features of this method are as follows: 

(i) The method succeeds in avoiding the singularity property although it employs almost the 
same procedure as the boundary element method. The singularity property must be avoided 
in the numerical analysis if it can because the numerical analysis is performed using finite 
decimals and the number of computation digits is limited. 

(ii) A coarser finite element mesh can be used more effectively than the ordinary mesh employed 
in the conventional finite element method. It is necessary to divide the field into a number of 
finite elements to solve the problem because the present method employs an approximate 
solution. The number of elements can be reduced. 

(iii) Computation time can be saved because the integration is carried out using only line 
integrals. 

In previous papers we have presented the method based on the three-node triangular and four- 
node quadrilateral elements. In this paper the interpolation equations based on the six-node 
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triangular and eight-node quadrilateral elements are examined. The interpolation equations used 
in the present paper are all non-conforming. Wave propagation phenomena over the surface of 
constant-depth and inclined-bottom channels and the oscillation of Ohfunato Bay are computed 
as numerical investigations. The results show that the three-node triangular and four-node 
quadrilateral elements are superior to the higher-order elements. The oscillation resonance curve 
computed via the three- and four-node elements is in good agreement with the observed curve. The 
present method has been shown to be useful for practical applications. 

BOUNDARY-TYPE FINITE ELEMENT METHOD 

The boundary-type finite element method has been presented and examined previously by our 
research group. The precise formulations can be found in References 1-5. The mild-slope equation 
is used as the basic 

when q is the water elevation and C and Cg represent the phase velocity and group velocity 
respectively. The angular frequency o is derived from the dispersion relation 

a’ = gk tanh (kh) (2) 
where k, g and h are the wave number, gravitational acceleration and the water depth respectively. 
On the boundary S of the domain V the following two boundary conditions are introduced: 

V = G  on s,, (3) 

V , n = a V l a n = 4 , n  on S2, (4) 

where n is the unit normal to the boundary and superscript A denotes the value which is specified on 
the boundary S. The whole boundary consists of S ,  and S, only and there is no overlap between S ,  
and S,. 

Assuming that the interpolation equation for the water elevation satisfies the Helmholz 
equation in each finite element, the function rI to be minimized is written in the form 

The wave field to be analysed is divided into a large number of finite elements, the interpolation of 
which can be written as 

V = P { U } ,  (6) 
where P denotes the interpolation equation, which is discussed precisely in the next section, and { a }  
represents the undetermined constants. The fact that the wave elevation should coincide with the 
wave elevation at each nodal point leads to 

{%=G(x) ,  (7) 
where (4) denotes the water elevation at  each nodal point of the finite elements. Usingequations (6) 
and (7), the following is obtained: 

q=PG-l{ij}, (8) 
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Introducing equations (8) and (9) into equation (5) and using the stationary condition of the 
function II, the equation for the boundary-type finite element method can be derived as 

where 
K = (G- ')TDG- 

D =$ CC,(PTQ + QTP)ds, s, 
( F }  =G-'js2 CC,PTfi,,ds. 

The usual superposition procedures based on equation (10) lead to the global form of the 
boundary-type finite element method. 

INTERPOLATION EQUATION 

Four types of element and five equations are intfoduced as the interpolation equation for the 
comparative study. These are based on trigonometric function series and are written as follows. 
The first equation is the function P in equation (6) expressed as 

based on the three-node triangular element. The second equation is 

P = [ cos( 5.x) cos ($ y ) cos( $.)sin( 5 y ) 
sin( $x)cos( 5 y ) sin( $x) sin( $ y ) 1, 

based on the four-node quadrilateral element. The third and fourth equations are 

P=[cos(-$x)cos(:y) cos(5x)sin($y) 

1 cos(kx) cos(ky) 

and 

cos(kx) cos(ky) sin(kx) sin(ky) , (14) 1 
based on the six-node triangular finite element. The fifth equation is 

P = [ cos($x) cos($ y ) cos( $x)sin($ y ) 
cos(kx) cos(ky) sin(kx) sin(ky) , (15) 1 

based on the eight-node quadrilateral element. There is a wide variety of possibilities for selecting 



Figure 1. Co-ordinate system 
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Figure 2. Interpolation equation 
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the interpolation equation. However, the inverse of G in equation (7) sometimes cannot be 
computed. We have shown numerically that the inverse of G corresponding to equations (1 1Hl5) 
can be derived. The computed results are not completely independent of the co-ordinate system 
which is attached to the finite element. The co-ordinates used are shown in Figure 1. 

Interpolation equation (8), based on equations (11H15), is represented in Figure 2. For 

I 

a 
x 

N 

t 

Boundary condit ions  

n = 1  o n  A-0 

n." = o on A - B - C - 0  

Figure 3. Water channel and boundary condition 
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Mesh l - ( a )  Mesh l-(b) 
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Mesh 2 (Ay = 5) 
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Mesh 4- (a )  Mesh 4-(b) 
Mesh 4 (Ay = 10) 

Figure 4. Finite element mesh 
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illustration, equilateral rectangular-triangular and square elements are used. For wave number k, 
the following values are used: k = 4n/100 for the three-node triangular and four-node quadrilateral 
elements; k = 8n/100 for the six-node triangular and eight-node quadrilateral elements. The 
interpolation equations are illustrated according to a nodal value of 6 at a nodal point 1. Figure 2 
shows that the interpolation equation is not always zero along the sides of the element, which 
means that the interpolation equations on both sides of adjoint elements are not coincident with 
each other; in other words, all elements are non-conforming elements. This fact means that six- 
node and eight-node elements are not necessarily an improvement over three-node and four-node 
elements. 

Wave number k=0.12566 
- Theoretical 

0 Present method 

A F.E.M. (Linear) n 

Mesh l-(a) Mesh 2-(a) 

8 

Mesh 3-(a) 
Mesh 4-(a) 

Figure 5. Computed results based on three-node triangular element with equation (11) 
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WATER OSCILLATION OF CONSTANT-DEPTH CHANNEL 

For a comparative study we have analysed the oscillation of water in an open channel assuming a 
constant water depth. In this case the Helmholz equation is used as the basic equation. Figure 3 
shows the configuration of the channel and the boundary conditions imposed. The water elevation 
is specified as 1. on the boundary A-D and the normal derivative of the water elevation, = 0, is 
assumed on the boundary A-B-C-D. Numerical studies based on four types of mesh pattern 
(Figure 4) have been carried out. Mesh 1 is the standard mesh pattern which consists of equilateral 
rectangular-triangular or square elements, referred to as mesh I-(a) and mesh I-(b) respectively. In 
meshes 2 and 3 the widths of the channels are chosen to be half and twice that of the standard mesh 
pattern respectively. Mesh 4 is an irregular pattern of the finite element idealizaton. 

The computed elevations with k = 47c/100 are plotted in Figures 5 and 6. The computations have 
been carried out using equation (1 l), based on the three-node triangular element, and 
equation (12), based on the four-node quadrilateral element. Numerical results obtained for 

wave number k0.12566 

- Theoretical 
0 Present method 

A F . E . M .  (Linear) 

Mesh 1-tb) Mesh 2-(b) 

Mesh 3-(b) Mesh 4 - ( b )  

Figure 6. Computed results based on four-node quadrilateral element with equation (12) 
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meshes 1 4  are shown by circles, while those obtained for conventional linear triangular and 
bilinear quadrilateral elements are shown by triangles. The solid curve shows the analytical 
solution. Close agreement is seen between the numerical results obtained by the present method 
and the analytical solution. However, in the case of the results for mesh 3, for both triangular and 
quadrilateral elements, there is a slight discrepancy between the numerical and analytical 
solutions, seemingly because the constant wave field cannot be expressed by the interpolation 

Wave number k-0.25133 

- Theoretical 

0 Present method 

A F.E.M. (Quadratic) a. 

Mesh 3-(a) Mesh 4-(a)  

Figure 7. Computed results based on six-node triangular element with equation (13) 
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equations employed in this paper. In our computed results the numerical solution obtained by the 
present method is closer to the analytical solution than that obtained by the conventional method. 

The computed elevations with k = 87c/100 are illustrated in Figures 7-9. The computations have 
been carried out using equations (13) and (14), based on the six-node triangular element, and 
equation (1 5), based on the eight-node quadrilateral element. Unfortunately, the numerical results 

Wave number k-0.25133 
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0 Present method 

A F.E.M. (Quadratic) 

Mesh l - (a )  Mesh 2-(a) 
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Figure 8. Computed results based on six-node triangular element with equation (14) 
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Wave number k=0.25133 
- Theoretical 
Q Present method 
A F.E.M. (Quadrat ic)  

. 00 

* 

Mesh l - ( b )  Mesh 2-(b)  

Mesh 3-(b) Mesh 4-(b)  

Figure 9. Computed results based on eight-node quadrilateral element with equation (15) 

shown in Figures 7 and 8 are not in good agreement with the analytical solution; we therefore 
abandoned the use of the six-node triangular elements. As shown in Figure 9, the water elevation 
computed by the eight-node quadrilateral element is in good agreement with the analytical 
solution. 
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WATER OSCILLATION OF INCLINED-BOTTOM CHANNEL 

In the light of the results of the previous section, we have studied three types of interpolation 
equation, (1 l), (1 2) and (1 5), for the oscillation of water in an open channel with an inclined water 
depth as shown in Figure 10. The boundary conditions are also shown in the figure. Three types of 
finite element mesh pattern have been used, referred to as meshes 1 ,2  and 3. The computation has 
been carried out with a wave period T =  25.73 s. The numerical wave elevations are illustrated in 
Figures 11-14. The circles are the results obtained by the present method and the triangles those 
obtained by linear triangular or bilinear quadrilateral elements. The solid curve shows the 
analytical solution.* The numerical solutions derived by equation (1 l), based on the three-node 
triangular element, and by equation (12), based on the four-node quadrilateral element, are in good 
agreement with the analytical solutions as shown in Figures 1 1 and 12. Contrary to this, the results 
by the eight-node quadrilateral element using mesh 3 show a marked discrepancy from the 
analytical solution as shown in Figure 13. For comparison, the computation has also been 
performed using mesh 2, i.e., the finer finite element idealization, the results of which are shown in 
Figure 14. The results are not improved and there are discrepancies between the numerical and 
analytical solutions. Moreover, the computation must be carried out with double precision, 
otherwise computation errors lead to a non-realistic solution. This fact is quite inconvenient for 
practical computation. 

Mesh 1 

B o u n d a r y  condi t ions 

II = -1  a t  B 

n = 1  a t  C Mesh 2 

II.= = 0 an  A - E - C - D - A  

Mesh 3 

Figure 10. Water channel and finite element idealization 
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Figure 11. Mesh 1 with three-node triangular element 
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Figure 12. Mesh 2 with four-node quadrilateral element 
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Figure 13. Mesh 3 with eight-node quadrilateral element 
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Figure 14. Mesh 2 with eight-node quadrilateral element 
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OSCILLATION OF OHFUNATO BAY 

As a practical application, an oscillation analysis of Ohfunato Bay has been conducted. Various 
observations were made recently and there are plenty of observed data on the oscillation period in 
this bay. In the light of the results of the previous two sections, the interpolation functions of the 
three-node triangular and four-node quadrilateral elements have been chosen for the compu- 
tations. Figures 15 and 16 show the finite element idealizations used. The total numbers of nodes 
and elements are 349 and 536 in the case of the three-node triangular element and 349 and 268 in 
the case of the four-node quadrilateral element respectively. At locations C and D breakwaters are 
constructed. The contour lines of water depth are represented in Figure 17. The boundary 
conditions that q = 1. on the boundary A-B and q,. = 0 on the boundary AX-E-D-B are imposed. 
The computations have been conducted varying the oscillation period from 1 to 60min. The 
computed water elevations at points a and b are plotted in Figure 18 in the case of the three-node 
element and in Figure 19 in the case of the four-node element. The observed characteristic periods 
obtained by the tidal gauge along the coastline are 15 and 40 min’ as shown in Figure 20, which are 
in good agreement with the computed results. Figures 21 and 22 are illustrations of the oscillation 
modes at the time when the characteristic periods were 15 and 39 min respectively. The numerical 
results in Figures 21 and 22 have been obtained by the three-node triangular element. The results 
by the four-node quadrilateral element are almost coincidental with those in Figures 21 and 22. 

Figure 15. Finite element idealization by three-node triangular element 



BOUNDARY-TYPE FINITE ELEMENT METHOD 573 

Figure 16. Finite element idealization by four-node quadrilateral element 

Figure 17. Contour line of water depth 
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Figure 18. Wave amplitude computed by three-node triangular element 
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Figure 19. Wave amplitude computed by four-node quadrilateral element 
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I t I I 
1 0  2 0  30 4 0  5 0  6 0  

Period (min.) 

Figure 20. Observed relative amplitude at point a 

Figure 21. Computed oscillation mode at characteristic period of 15 rnin 
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Figure 22. Computed oscillation mode at characteristic period of 39 rnin 

CONCLUSIONS 

Five types of interpolation have been tested for the boundary-type finite element method. The 
conclusions derived are as follows: 

(i) All interpolation equations are non-conforming as shown in Figure 2. Thus the multiple- 
node element is not always better than the simple element. 

(ii) According to the numerical results obtained in the constant-depth channel, interpolation 
equations (13) and (14), based on the six-node triangular element, are not suitable for the 
computation. 

(iii) According to the numerical results obtained in the inclined-bottom channel, interpolation 
equation (1 3, based on the eight-node quadrilateral element, needs double-precision 
computation. 

(iv) The fact that interpolation equations (11) and (12), based on the three-node triangular and 
four-node quadrilateral elements respectively, are suitable for the computation is derived 
from all three numerical examples. 

(v) Numerical results obtained by the three- and four-node elements are in good agreement 
with the observed results. 

From the results in this paper, it is concluded that the boundary-type finite element method 
based on the three-node and four-node elements provides a useful tool for the practical 
computation of wave and oscillation analyses. 
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